手机浏览器扫描二维码访问
(例:UC浏览器、QQ浏览器)
精彩阅读问道小说网
&esp;&esp;作者君在作品相关中其实已经解释过这个问题。
&esp;&esp;不过仍然有人质疑——“你说得太含糊了”
,“火星轨道的变化比你想象要大得多!”
&esp;&esp;那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。
&esp;&esp;以下是文章内容:
&esp;&esp;long-tertegrationsandstabilityofparyorbitsourrsyste
&esp;&esp;abstract
&esp;&esp;wepresenttheresultfverylong-ternuricaltegrationfparyorbitalotionver109-yrti-spanscdgallnepsaickspectionofournuricaldatashowsthattheparyotion,atleastoursipledynaicalodel,seestobeitestableevenoverthisverylongti-spanacloserlookatthelowest-freencyosciltionsgalow-passfiltershowsthepotentiallydiffivecharacterofterrestrialparyotion,especiallythatofrcurythebehaviouroftheeentricityofrcuryourtegrationsisalitativelysiirtotheresultsfrojacesskar&039;ssecurperturbationtheory(egeax~035over~±4gyr)however,therearenoapparentsecurcreasefeentricityorclationanyorbitalelentftheps,whichayberevealedbystilllonr-ternuricaltegrationswehavealperfordaupleoftrialtegrationscdgotionftheouterfivepverthedurationof±5x1010yrtheresultdicatesthatthethreeajorrenancestheneptune–ptosystehavebeenataedoverthe1011-yrti-span
&esp;&esp;1troduction
&esp;&esp;11defitionoftheproble
&esp;&esp;theestionofthestabilityofourrsystehasbeendebatedoverseveralhundredyears,scetheeraofnewtontheproblehasattractedanyfaoatheaticianvertheyearsandhaspyedacentralrolethedevelopntofnon-leardynaicsandchaostheoryhowever,wedonotyethaveadefiteanswertotheestionofwhetherourrsysteisstableornotthisispartlyaresultofthefactthatthedefitionoftheter‘stability’isvaguewhenitisedretiontotheprobleofparyotionthersysteactuallyitisnoteasytogiveaclear,rigoroandphysicallyangfuldefitionofthestabilityofourrsyste
&esp;&esp;aonganydefitionfstability,hereweadoptthehilldefition(gdan1993):actuallythisisnotadefitionofstability,butofstabilitywedefeasysteasbegunstablewhenacloseenunterourswherethesyste,startgfroacertaitialnfiguration(chabers,wetherillitotanikawa1999)asysteisdefedasexperiencgacloseenunterwhenobodiesapproachoneanotherwithanareaoftherrhillradiotherwisethesysteisdefedasbegstablehenceforwardwestatethatourparysysteisdynaicallystableifnocloseenunterhappensdurgtheaofourrsyste,about±5gyrcidentally,thisdefitionayberepcedbyonewhichanourrenceofanyorbitalcrossgbeeeneitherofapairofpstakespcethisisbecaeweknowfroxperiencethatanorbitalcrossgisverylikelytoleadtoacloseenunterparyandproarysystes(yoshaga,kokuboako1999)ofursethisstatentcannotbesiplyappliedtosysteswithstableorbitalrenancessuchastheneptune–ptosyste
&esp;&esp;12previostudiesandaifthisresearch
&esp;&esp;additiontothevaguenesfthenceptofstability,thepsourrsysteshowacharactertypicalofdynaicalchaos(ssanwisdo1988,1992)thecaeofthischaoticbehaviourisnowpartlderstoodasbegaresultofrenanceoverppg(urraylecar,franklholan2001)however,iouldreiretegratgoveranensebleofparysystescdgallnepsforaperiodvergseveral10gyrtothoroughlderstandthelong-tervotionofparyorbits,scechaoticdynaicalsystesarecharacterizedbytheirstrongdependenceonitialnditions
&esp;&esp;frothatpotofview,anyofthepreviolong-ternuricaltegrationscdedonlytheouterfiveps(ssankoshitanakai1996)thisisbecaetheorbitalperiodftheouterpsareuchlonrthanthoseofthenerfourpsthatitisucheasiertofollowthesysteforagiventegrationperiodatpresent,thelonstnuricaltegrationspublishedjournalsarethoseofduncanlissauer(1998)althoughtheiratarastheeffectofpost-a-seencerasslosnthestabilityofparyorbits,theyperfordanytegrationsvergupto~1011yroftheorbitalotionfthefourjovianpstheitialorbitalelentsandassefpsarethesaasthoseofourrsysteduncanlissauer&039;spaper,buttheydecreasetheasfthesungraduallytheirnuricalexperintsthisisbecaetheynsidertheeffectofpost-a-seencerasslossthepapernseently,theyfoundthatthecrossgti-scaleofparyorbits,whichcanbeatypicaldicatorofthestabilityti-scale,isitesensitivetotherateofassdecreaseofthesunwhentheasfthesunisclosetoitspresentvae,thejovianpsreastableover1010yr,orperhapslonrduncanlissaueralperfordfoursiirexperintntheorbitalotionofsevenps(ventoneptune),whichveraspanof~109yrtheirexperintnthesevenpsarenotyetprehensive,butitseesthattheterrestrialpsalreastabledurgthetegrationperiod,atagalostregurosciltions
&esp;&esp;ontheotherhand,hisauratesei-analyticalsecurperturbationtheory(skar1988),skarfdsthatrandirregurvariationscanappeartheeentricitiesandclationftheterrestrialps,especiallyofrcuryandarnati-scaleofseveral109yr(skar1996)theresultfskar&039;ssecurperturbationtheoryshouldbenfirdandvestigatedbyfullynuricaltegrations
&esp;&esp;thispaperwepresentpreliaryresultfsixlong-ternuricaltegrationnallneparyorbits,vergaspanofseveral109yr,andofoothertegrationsvergaspanof±5x1010yrthetotalepsedtiforalltegrationsisorethan5yr,gseveraldedicatedpcsandworkstationsoneofthefundantalncsionfourlong-tertegrationsisthatrsysteparyotionseestobestableterfthehillstabilityntionedabove,atleastoverati-spanof±4gyractually,ournuricaltegrationsthesystewasfarorestablethanwhatisdefedbythehillstabilitycriterion:notonlydidnocloseenunterhappendurgthetegrationperiod,butalalltheparyorbitalelentshavebeennfedanarrowregionbothtiandfreencydoa,thoughparyotionsarestochasticscethepurposeofthispaperistoexhibitandoverviewtheresultfourlong-ternuricaltegrations,weshowtypicalexaplefiguresasevidenceoftheverylong-terstabilityofrsysteparyotionforreaderswhohaveorespecificanddeeperterestsournuricalresults,wehavepreparedawebpa(aess),whereweshowraworbitalelents,theirlow-passfilteredresults,variationofdeunayelentsandangurontudeficit,andresultfoursipleti–freencyanalysinallofourtegrations
&esp;&esp;section2webrieflyexpourdynaicalodel,nuricalthodanditialnditionsedourtegrationssection3isdevotedtoadescriptionoftheickresultfthenuricaltegrationsverylong-terstabilityofrsysteparyotionisapparentbothparypositionsandorbitalelentsaroughestiationofnuricalerrorsisalgivensection4goentoadiscsionofthelonst-tervariationofparyorbitsgalow-passfilterandcdesadiscsionofangurontudeficitsection5,wepresentasetofnuricaltegrationsfortheouterfivepsthatspans±5x1010yrsection6wealdiscsthelong-terstabilityoftheparyotionanditspossiblecae
&esp;&esp;2descriptionofthenuricaltegrations
&esp;&esp;(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了也不一定能成功显示。
)
&esp;&esp;23nuricalthod
&esp;&esp;weutilizeasend-orderwisdo–holansyplectiapaurategrationthod(wisdokoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warstart’(sahatreae1992,1994)
&esp;&esp;thestepsizeforthenuricaltegrationsis8dthroughoutalltegrationftheneps(n±1,2,3),whichisabout111oftheorbitalperiodofthenerostp(rcury)asforthedeterationofstepsize,wepartlyfollowtheprevionuricaltegrationofallnepsssanwisdo(1988,72d)andsahatreae(1994,22532d)weroundedthedecialpartofthetheirstepsizesto8toakethestepsizeaultipleof2ordertoreducetheauutionofround-offerrortheputationprocessesretiontothis,wisdoholan(1991)perfordnuricaltegrationftheouterfiveparyorbitsgthesyplectiaithastepsizeof400d,11083oftheorbitalperiodofjupitertheirresultseestobeaurateenough,whichpartlyjtifieurthodofdetergthestepsizehowever,scetheeentricityofjupiter(~005)isuchsallerthanthatofrcury(~02),weneedcarewhenweparethesetegrationssiplyterfstepsizes
&esp;&esp;thetegrationoftheouterfiveps(f±),wefixedthestepsizeat400d
&esp;&esp;weadoptgas&039;fandgfunctionsthesyplectiaptotherwiththethird-orderhalleythod(danby1992)asalverforkeplereationsthenuberofaxiuiterationswesethalley&039;sthodis15,buttheyneverreachedtheaxiuanyofourtegrations
&esp;&esp;thetervalofthedataoutputis200000d(~5yr)forthecalcutionfallneps(n±1,2,3),andabout8000000d(~21903yr)forthetegrationoftheouterfiveps(f±)
&esp;&esp;althoughnooutputfiltergwasdonewhenthenuricaltegrationswereprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadpletedallthecalcutionsseesection41fororedetail
&esp;&esp;24errorestiation
&esp;&esp;241retiveerrorstotalenergyandangurontu
&esp;&esp;aordgtooneofthebasicpropertiefsyplectictegrators,whichnservethephysicallynservativeantitieswell(totalorbitalenergyandangurontu),ourlong-ternuricaltegrationsseetohavebeenperfordwithverysallerrorstheaveradretiveerrorftotalenergy(~10?9)andoftotangurontu(~10?11)havereaednearlynstantthroughoutthetegrationperiod(fig1)thespecialstartupprocedure,warstart,wouldhavereducedtheaveradretiveerrortotalenergybyaboutoneorderofagnitudeorore
&esp;&esp;retivenuricalerrorofthetotangurontuδaa0andthetotalenergyδee0ournuricaltegrationsn±1,2,3,whereδeandδaaretheabtechanofthetotalenergyandtotangurontu,respectively,ande0anda0aretheiritialvaesthehorizontanitisgyr
&esp;&esp;notethatdiffereneratgsystes,differentatheaticallibraries,anddifferenthardwarearchitecturesresultdifferentnuricalerrors,throughthevariationsround-offerrorhandlgandnuricalgorithstheupperpaneloffig1,wecanregnizethissituationthesecurnuricalerrorthetotangurontu,whichshouldberigorolypreserveduptoache-eprecision
&esp;&esp;242errorparylongitudes
&esp;&esp;scethesyplectiapspreservetotalenergyandtotangurontuofn-bodydynaicalsystesherentlywell,thedegreeoftheirpreservationaynotbeagoodasureoftheauracyofnuricaltegrations,especiallyasaasureofthepositionalerrorofps,ietheerrorparylongitudestoestiatethenuricalerrortheparylongitudes,weperfordthefollogproceduresweparedtheresultofouralong-tertegrationswithtesttegrations,whichspanuchshorterperiodsbuithuchhigherauracythantheategrationsforthispurpose,weperfordauchoreauratetegrationwithastepsizeof0125d(164oftheategrations)spanng3x105yr,startgwiththesaitialnditionsasthen?1tegrationwensiderthatthistesttegrationprovideswitha‘pseudo-true’tionofparyorbitalevotionnext,weparethetesttegrationwiththeategration,n?1fortheperiodof3x105yr,weseeadifferenceananoalieftheearthbeeentheotegrationf~052°(thecaseofthen?1tegration)thisdifferencecanbeextrapotedtothevae~8700°,about25rotationfearthafter5gyr,scetheerroroflongitudescreaseslearlywithtithesyplectiapsiirly,thelongitudeerrorofptocanbeestiatedas~12°thisvaeforptoisuchbetterthantheresultkoshitanakai(1996)wherethedifferenceisestiatedas~60°
&esp;&esp;3nuricalresults–ignceattherawdata
&esp;&esp;thissectionwebrieflyreviewthelong-terstabilityofparyorbitalotionthroughsnapshotfrawnuricaldatatheorbitalotionofpsdicateslong-terstabilityallofournuricaltegrations:noorbitalcrossgsnorcloseenuntersbeeenanypairofpstookpce
&esp;&esp;31neraldescriptionofthestabilityofparyorbits